A Radial Uniqueness Theorem for Meromorphic Functions
نویسندگان
چکیده
منابع مشابه
Uniqueness of Meromorphic Functions∗
In this paper, Hinkkanen’s problem (1984) is completely solved, i.e., it is shown that any meromorphic function f is determined by its zeros and poles and the zeros of f (j) for j = 1, 2, 3, 4. To appear in J. Canad. Math. / Canad. J. Math.
متن کاملUniqueness of meromorphic functions sharing one value
In this paper, we discuss the problem of meromorphic functions sharing one value and obtain two theorems which improve a result of C.C.Yang and X.H.Hua.
متن کاملUniqueness and value-sharing of meromorphic functions
Abstract. Concerning the uniqueness and sharing values of meromorphic functions, many results about meromorphic functions that share more than or equal to two values have been obtained. In this paper, we shall study meromorphic functions that share only one value, and prove the following result: For n ≥ 11 and two meromorphic functions f(z) and g(z) , if ff ′ and gg share the same nonzero and f...
متن کاملUniqueness of Meromorphic Functions Sharing Values
In this paper, we investigate the problem of the uniqueness of meromorphic function sharing values. It is turned out that our results are natural extensions of Q. C. Zhang and G. G. Gundersen.
متن کاملFixed-points and uniqueness of meromorphic functions
Let () () z g z f , be two nonconstant meromorphic functions, and let k n, be two positive integers with. 7 3 + ≥ k n If () () k n f and () () k n g share () z f z CM; and () z g share , IM ∞ then (1) () () z tg z f = for ; 2 ≥ k (2) either () () 2 2 2 1 , cz cz e c z g e c z f − = = or () () z tg z f = for , 1 = k where , , 2 1 c c and c are three nonzero constants satisfying () 1 4 2 2 1 2 − ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 1982
ISSN: 0002-9939
DOI: 10.2307/2044068